Metabolic rate controls respiratory pattern in insects.

نویسندگان

  • H L Contreras
  • T J Bradley
چکیده

The majority of scientific papers on the subject of respiratory patterns in insects have dealt with the discontinuous gas-exchange cycle (DGC). The DGC is characterized by the release of bursts of CO(2) from the insect, followed by extended periods of spiracular closure. Several hypotheses have been put forward to explain the evolutionary origin and physiological function of this unusual respiratory pattern. We expand upon one of these (the oxidative damage hypothesis) to explain not only the occurrence of the DGC but also the mechanistic basis for the transition to two other well-characterized respiratory patterns: the cyclic pattern and the continuous pattern. We propose that the specific pattern employed by the insect at any given time is a function of the amount of oxygen contained in the insect at the time of spiracular closure and the aerobic metabolic rate of the insect. Examples of each type of pattern are shown using the insect Rhodnius prolixus. In addition, contrary to the expectations deriving from the hygric hypothesis, it is demonstrated that the DGC does not cease in Rhodnius in humid air.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of ambient humidity and metabolic rate on the gas-exchange pattern of the semi-aquatic insect Aquarius remigis.

We have examined the effects of temperature on metabolic rate and respiratory pattern in the water strider Aquarius remigis. As temperature was increased from 10 to 30°C, the metabolic rate of the insects increased and the respiratory pattern transitioned from discontinuous, to cyclic, to continuous. The discontinuous gas-exchange cycle (DGC) was observed even in insects standing on water when ...

متن کامل

Temperature-dependent variation in gas exchange patterns and spiracular control in Rhodnius prolixus.

Insects display an array of respiratory behaviors, including the use of discontinuous gas exchange. This pattern is characterized by periods of spiracular closure, micro-openings (flutter), and complete openings during which the majority of gas exchange takes place. A current model of insect spiracular control suggests that spiracles are controlled by two interacting feedback loops, which produ...

متن کامل

Haematophagy is costly: respiratory patterns and metabolism during feeding in Rhodnius prolixus.

Feeding on the blood of vertebrates is a risky task for haematophagous insects and it can be reasonably assumed that it should also be costly in terms of energetic expenditure. Blood circulates inside vessels and it must be pumped through narrow tubular stylets to be ingested. We analysed the respiratory pattern and the energetic cost of taking a blood meal in Rhodnius prolixus using flow-throu...

متن کامل

Gas exchange patterns and water loss rates in the Table Mountain cockroach, Aptera fusca (Blattodea: Blaberidae).

The importance of metabolic rate and/or spiracle modulation for saving respiratory water is contentious. One major explanation for gas exchange pattern variation in terrestrial insects is to effect a respiratory water loss (RWL) saving. To test this, we measured the rates of CO2 and H2O release ( and , respectively) in a previously unstudied, mesic cockroach, Aptera fusca, and compared gas exch...

متن کامل

Metabolism and water loss rate of the haematophagous insect Rhodnius prolixus: effect of starvation and temperature.

Haematophagous insects suffer big changes in water needs under different levels of starvation. Rhodnius prolixus is the most important haematophagous vector of Chagas disease in the north of South America and a model organism in insect physiology. Although there have been some studies on patterns of gas exchange and metabolic rates, there is little information regarding water loss in R. prolixu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 212 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2009